From graphs to signals and back: Identification of network structures using spectral analysis
نویسندگان
چکیده
The structure of networks describing interactions between entities gives significant insights about how these systems work. Recently, an approach has been proposed to transform a graph into a collection of signals, using a multidimensional scaling technique on a distance matrix representing relations between vertices of the graph as points in a Euclidean space: coordinates are interpreted as components, or signals, indexed by the vertices. In this article, we propose several extensions to this approach: We first extend the current methodology, enabling us to highlight connections between properties of the collection of signals and graph structures, such as communities, regularity or randomness, as well as combinations of those. A robust inverse transformation method is next described, taking into account possible changes in the signals compared to original ones. This technique uses, in addition to the relationships between the points in the Euclidean space, the energy of each signal, coding the different scales of the graph structure. These contributions open up new perspectives by enabling processing of graphs through the processing of the corresponding collection of signals. A technique of denoising of a graph by filtering of the corresponding signals is then described, suggesting considerable potential of the approach.
منابع مشابه
Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملمقایسه روش های طیفی برای شناسایی زبان گفتاری
Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...
متن کاملSpectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network
Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1502.04697 شماره
صفحات -
تاریخ انتشار 2015